Partitions with fixed number of sizes
Journal of integer sequences, Tome 18 (2015) no. 11.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $t(n,s)$ and $t(n,k,s), respectively,$ be the number of partitions of $n$ with $s$ different sizes, and the number of partitions of $n$ with exactly $k$ parts and $s$ different sizes. In this article, an asymptotic estimate for $t(n, k, s)$ is presented for the following two cases: (i) $s = k - 1$ and (ii) when $k$ is a prime number with $s = 2$. Further, the enumeration of uniform partitions with exactly 2 sizes is considered and the estimate of its partial sum is derived. Finally, a parity result for $t(n, 2)$ is obtained.
Classification : 05A17, 11P81
Keywords: partition, size of a partition, parity, asymptotic estimate
@article{JIS_2015__18_11_a4,
     author = {Christopher, David},
     title = {Partitions with fixed number of sizes},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a4/}
}
TY  - JOUR
AU  - Christopher, David
TI  - Partitions with fixed number of sizes
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a4/
LA  - en
ID  - JIS_2015__18_11_a4
ER  - 
%0 Journal Article
%A Christopher, David
%T Partitions with fixed number of sizes
%J Journal of integer sequences
%D 2015
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a4/
%G en
%F JIS_2015__18_11_a4
Christopher, David. Partitions with fixed number of sizes. Journal of integer sequences, Tome 18 (2015) no. 11. http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a4/