Upper bounds for prime gaps related to firoozbakht's conjecture
Journal of integer sequences, Tome 18 (2015) no. 11.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study two kinds of conjectural bounds for the prime gap after the $k$th prime $p_{k}$: (A) $p_{k+1} p_{k}^{1+1/k}$ and (B) $p_{k+1} - p_{k} \log ^{2}p_{k} - \log p_{k} - b$ for $k > 9$. The upper bound (A) is equivalent to Firoozbakht's conjecture. We prove that (A) implies (B) with $b = 1$; on the other hand, (B) with $b = 1.17$ implies (A). We also give other sufficient conditions for (A) that have the form (B) with $b \to 1$ as $k \to \infty $ .
Classification : 11N05
Keywords: cramér conjecture, firoozbakht conjecture, prime gap
@article{JIS_2015__18_11_a2,
     author = {Kourbatov, Alexei},
     title = {Upper bounds for prime gaps related to firoozbakht's conjecture},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a2/}
}
TY  - JOUR
AU  - Kourbatov, Alexei
TI  - Upper bounds for prime gaps related to firoozbakht's conjecture
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a2/
LA  - en
ID  - JIS_2015__18_11_a2
ER  - 
%0 Journal Article
%A Kourbatov, Alexei
%T Upper bounds for prime gaps related to firoozbakht's conjecture
%J Journal of integer sequences
%D 2015
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a2/
%G en
%F JIS_2015__18_11_a2
Kourbatov, Alexei. Upper bounds for prime gaps related to firoozbakht's conjecture. Journal of integer sequences, Tome 18 (2015) no. 11. http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a2/