Special numbers in the ring $\Bbb Z_n$
Journal of integer sequences, Tome 18 (2015) no. 11.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In a recent article, Nowicki introduced the concept of a special number. Specifically, an integer $d$ is called $special$ if for every integer $m$ there exist solutions in non-zero integers $a, b, c$ to the equation $a^{2} + b^{2} - dc^{2} = m$. In this article we investigate pairs of integers $(n, d)$, with $n \ge 2$, such that for every integer $m$ there exist units $a, b$, and $c$ in $Z_{n}$ satisfying $m \equiv a^{2} + b^{2} - dc^{2} (mod n)$. By refining a recent result of Harrington, Jones, and Lamarche on representing integers as the sum of two non-zero squares in $Z_{n}$, we establish a complete characterization of all such pairs.
Classification : 11E25, 11A07
Keywords: sum of squares, ring of integers modulo n, congruence
@article{JIS_2015__18_11_a1,
     author = {Harrington, Joshua and Gross, Samuel S.},
     title = {Special numbers in the ring $\Bbb Z_n$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a1/}
}
TY  - JOUR
AU  - Harrington, Joshua
AU  - Gross, Samuel S.
TI  - Special numbers in the ring $\Bbb Z_n$
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a1/
LA  - en
ID  - JIS_2015__18_11_a1
ER  - 
%0 Journal Article
%A Harrington, Joshua
%A Gross, Samuel S.
%T Special numbers in the ring $\Bbb Z_n$
%J Journal of integer sequences
%D 2015
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a1/
%G en
%F JIS_2015__18_11_a1
Harrington, Joshua; Gross, Samuel S. Special numbers in the ring $\Bbb Z_n$. Journal of integer sequences, Tome 18 (2015) no. 11. http://geodesic.mathdoc.fr/item/JIS_2015__18_11_a1/