Generalized anti-Waring numbers
Journal of integer sequences, Tome 18 (2015) no. 10.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The anti-Waring problem considers the smallest positive integer such that it and every subsequent integer can be expressed as the sum of the $k^{th}$ powers of $r$ or more distinct natural numbers. We give a generalization that allows elements from any nondecreasing sequence, rather than only the natural numbers. This generalization is an extension of the anti-Waring problem, as well as the idea of complete sequences. We present new anti-Waring and generalized anti-Waring numbers, as well as a result to verify computationally when a generalized anti-Waring number has been found.
Classification : 11P05, 05A17
Keywords: complete sequence, sum of powers, anti-Waring number
@article{JIS_2015__18_10_a5,
     author = {Fuller, Chris and Nichols, Robert H.jun.},
     title = {Generalized {anti-Waring} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {18},
     number = {10},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2015__18_10_a5/}
}
TY  - JOUR
AU  - Fuller, Chris
AU  - Nichols, Robert H.jun.
TI  - Generalized anti-Waring numbers
JO  - Journal of integer sequences
PY  - 2015
VL  - 18
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2015__18_10_a5/
LA  - en
ID  - JIS_2015__18_10_a5
ER  - 
%0 Journal Article
%A Fuller, Chris
%A Nichols, Robert H.jun.
%T Generalized anti-Waring numbers
%J Journal of integer sequences
%D 2015
%V 18
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2015__18_10_a5/
%G en
%F JIS_2015__18_10_a5
Fuller, Chris; Nichols, Robert H.jun. Generalized anti-Waring numbers. Journal of integer sequences, Tome 18 (2015) no. 10. http://geodesic.mathdoc.fr/item/JIS_2015__18_10_a5/