On the powerful and squarefree parts of an integer
Journal of integer sequences, Tome 17 (2014) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Any integer $n\ge 2$ can be written in a unique way as the product of its powerful part and its squarefree part, that is, as $n=mr$ where $m$ is a powerful number and $r$ a squarefree number, with $gcd(m,r)=1$. We denote these two parts of an integer $n$ by $\pow(n)$ and $\sq(n)$respectively, setting for convenience $\pow(1)=\sq(1)=1$. We first examine the behavior of the counting functions $\sum_{n\le x,\, {\scriptsize\sq}(n)\le y} 1$ and $\sum_{n\le x,\, {\scriptsize \pow}(n)\le y} 1$. Letting $P(n)$ stand for the largest prime factor of $n$, we then provide asymptotic values of $A_y(x):=\sum_{n\le x,\, P(n)\le y} \pow(n)$ and $B_y(x) :=\sum_{n\le x,\, P(n)\le y} \sq(n)$when $y=x^{1/u}$ with $u\ge 1$ fixed. We also examine the size of $A_{y}(x)$ and $B_{y}(x)$ when $y=(\log x)^\eta$ for some $\eta1$. Finally, we prove that $A_{y}(x)$ will coincide with $B_{y}(x)$ in the sense that $\log(A_y(x)/x) = (1+o(1))\log(B_y(x)/x)$ as $x\to \infty$ if we choose $y=2\log x$.
Classification : 11A25, 11N37
Keywords: powerful numbers, arithmetic function
@article{JIS_2014__17_8_a6,
     author = {Cloutier, Maurice-\'Etienne and De Koninck, Jean-Marie and Doyon, Nicolas},
     title = {On the powerful and squarefree parts of an integer},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a6/}
}
TY  - JOUR
AU  - Cloutier, Maurice-Étienne
AU  - De Koninck, Jean-Marie
AU  - Doyon, Nicolas
TI  - On the powerful and squarefree parts of an integer
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a6/
LA  - en
ID  - JIS_2014__17_8_a6
ER  - 
%0 Journal Article
%A Cloutier, Maurice-Étienne
%A De Koninck, Jean-Marie
%A Doyon, Nicolas
%T On the powerful and squarefree parts of an integer
%J Journal of integer sequences
%D 2014
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a6/
%G en
%F JIS_2014__17_8_a6
Cloutier, Maurice-Étienne; De Koninck, Jean-Marie; Doyon, Nicolas. On the powerful and squarefree parts of an integer. Journal of integer sequences, Tome 17 (2014) no. 8. http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a6/