On a congruence modulo $n^3$ involving two consecutive sums of powers
Journal of integer sequences, Tome 17 (2014) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For various positive integers $k$, the sums of $k$th powers of the first $n$ positive integers, $S_{k}(n) := 1^{k} + 2^{k} + \dots + n^{k}$, are some of the most popular sums in all of mathematics. In this note we prove a congruence modulo $n^{3}$ involving two consecutive sums $S_{2k}(n)$ and $S_{2k+1}(n)$. This congruence allows us to establish an equivalent formulation of Giuga's conjecture. Moreover, if $k$ is even and $n \ge 5$ is a prime such that $n -1 \? 2k-2$, then this congruence is satisfied modulo $n^{4}$. This suggests a conjecture about when a prime can be a Wolstenholme prime. We also propose several Giuga-Agoh-like conjectures. Further, we establish two congruences modulo $n^{3}$ for two binomial-type sums involving sums of powers $S_{2i}(n)$ with $i = 0, 1, \dots , k$. Finally, we obtain an extension of a result of Carlitz-von Staudt for odd power sums.
Classification : 05A10, 11A07, 11A51, 11B50, 11B65, 11B68
Keywords: sum of powers, Bernoulli number, giuga's conjecture, carlitz-von staudt result, von staudt-clausen theorem
@article{JIS_2014__17_8_a2,
     author = {Me\v{s}trovi\'c, Romeo},
     title = {On a congruence modulo $n^3$ involving two consecutive sums of powers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a2/}
}
TY  - JOUR
AU  - Meštrović, Romeo
TI  - On a congruence modulo $n^3$ involving two consecutive sums of powers
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a2/
LA  - en
ID  - JIS_2014__17_8_a2
ER  - 
%0 Journal Article
%A Meštrović, Romeo
%T On a congruence modulo $n^3$ involving two consecutive sums of powers
%J Journal of integer sequences
%D 2014
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a2/
%G en
%F JIS_2014__17_8_a2
Meštrović, Romeo. On a congruence modulo $n^3$ involving two consecutive sums of powers. Journal of integer sequences, Tome 17 (2014) no. 8. http://geodesic.mathdoc.fr/item/JIS_2014__17_8_a2/