$p$-adic properties of Lengyel's numbers
Journal of integer sequences, Tome 17 (2014) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Lengyel introduced a sequence of numbers $Z_{n}$, defined combinatorially, that satisfy a recurrence where the coefficients are Stirling numbers of the second kind. He proved some 2-adic properties of these numbers. In this paper, we give another recurrence for the sequence $Z_{n}$, where the coefficients are Stirling numbers of the first kind. Using this formula, we give another proof of Lengyel's lower bound on the 2-adic valuation of the $Z_{n}$. We also resolve some conjectures of Lengyel about the sequence $Z_{n}$.
Classification : 11B73, 11F85
Keywords: lengyel's sequence, Stirling number, congruence, p-adic property
@article{JIS_2014__17_7_a7,
     author = {Barsky, D. and B\'ezivin, J.-P.},
     title = {$p$-adic properties of {Lengyel's} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_7_a7/}
}
TY  - JOUR
AU  - Barsky, D.
AU  - Bézivin, J.-P.
TI  - $p$-adic properties of Lengyel's numbers
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_7_a7/
LA  - en
ID  - JIS_2014__17_7_a7
ER  - 
%0 Journal Article
%A Barsky, D.
%A Bézivin, J.-P.
%T $p$-adic properties of Lengyel's numbers
%J Journal of integer sequences
%D 2014
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_7_a7/
%G en
%F JIS_2014__17_7_a7
Barsky, D.; Bézivin, J.-P. $p$-adic properties of Lengyel's numbers. Journal of integer sequences, Tome 17 (2014) no. 7. http://geodesic.mathdoc.fr/item/JIS_2014__17_7_a7/