On an arithmetic convolution
Journal of integer sequences, Tome 17 (2014) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Cauchy-type product of two arithmetic functions $f$ and $g$ on nonnegative integers is defined by $(f \bullet g)(k) := \Sigma _{m=0}^{k} C(k, m) f(m)g(k-m)$. We explore some algebraic properties of the aforementioned convolution, which is a fundamental characteristic of the identities involving the Bernoulli numbers, the Bernoulli polynomials, the power sums, the sums of products, and so forth.
Classification : 11A25, 11B68, 05A10, 11B65
Keywords: Cauchy product, Cauchy-type product, Dirichlet convolution, arithmetic function, Bernoulli number, torsion-free group, Bernoulli polynomial, power sum
@article{JIS_2014__17_6_a4,
     author = {Singh, Jitender},
     title = {On an arithmetic convolution},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a4/}
}
TY  - JOUR
AU  - Singh, Jitender
TI  - On an arithmetic convolution
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a4/
LA  - en
ID  - JIS_2014__17_6_a4
ER  - 
%0 Journal Article
%A Singh, Jitender
%T On an arithmetic convolution
%J Journal of integer sequences
%D 2014
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a4/
%G en
%F JIS_2014__17_6_a4
Singh, Jitender. On an arithmetic convolution. Journal of integer sequences, Tome 17 (2014) no. 6. http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a4/