Finite reciprocal sums involving summands that are balanced products of generalized Fibonacci numbers
Journal of integer sequences, Tome 17 (2014) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we find closed forms, in terms of rational numbers, for certain finite sums. The denominator of each summand is a finite product of terms drawn from two sequences that are generalizations of the Fibonacci and Lucas numbers.
Classification : 11B39, 11B37
Keywords: reciprocal summation, Fibonacci number, Lucas number
@article{JIS_2014__17_6_a2,
     author = {Melham, R.S.},
     title = {Finite reciprocal sums involving summands that are balanced products of generalized {Fibonacci} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a2/}
}
TY  - JOUR
AU  - Melham, R.S.
TI  - Finite reciprocal sums involving summands that are balanced products of generalized Fibonacci numbers
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a2/
LA  - en
ID  - JIS_2014__17_6_a2
ER  - 
%0 Journal Article
%A Melham, R.S.
%T Finite reciprocal sums involving summands that are balanced products of generalized Fibonacci numbers
%J Journal of integer sequences
%D 2014
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a2/
%G en
%F JIS_2014__17_6_a2
Melham, R.S. Finite reciprocal sums involving summands that are balanced products of generalized Fibonacci numbers. Journal of integer sequences, Tome 17 (2014) no. 6. http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a2/