Counting palindromes according to $r$-runs of ones using generating functions
Journal of integer sequences, Tome 17 (2014) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We derive generating functions for the enumeration of all palindromic binary strings of length $n$ having only runs of 1's of length $\le r$. We provide asymptotic expressions for fixed $r$ and $n \to \infty $. Eventually, $r$ is treated as a random variable and an asymptotic equivalent for the largest run of 1's in binary palindromes is derived.
Classification : 11B39, 05A15
Keywords: binary string, generating function, r-run of ones, asymptotics
@article{JIS_2014__17_6_a1,
     author = {Prodinger, Helmut},
     title = {Counting palindromes according to $r$-runs of ones using generating functions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a1/}
}
TY  - JOUR
AU  - Prodinger, Helmut
TI  - Counting palindromes according to $r$-runs of ones using generating functions
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a1/
LA  - en
ID  - JIS_2014__17_6_a1
ER  - 
%0 Journal Article
%A Prodinger, Helmut
%T Counting palindromes according to $r$-runs of ones using generating functions
%J Journal of integer sequences
%D 2014
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a1/
%G en
%F JIS_2014__17_6_a1
Prodinger, Helmut. Counting palindromes according to $r$-runs of ones using generating functions. Journal of integer sequences, Tome 17 (2014) no. 6. http://geodesic.mathdoc.fr/item/JIS_2014__17_6_a1/