Cyclic products of purely periodic irrationals
Journal of integer sequences, Tome 17 (2014) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\left(a_{0}, \dotsb ,a_{k-1} \right)$ be a sequence of positive integers and $m$ a positive integer. We prove that "almost every" real quadratic unit $\epsilon$ of norm (-1)$^{k}$ admits at least $m$ distinct factorizations into a product of purely periodic irrationals of the form
Classification : 11A55, 11N32, 37D20
Keywords: simple continued fraction, purely periodic irrational, prime represented by quadratic polynomial, linear automorphism of the torus, Anosov automorphism
@article{JIS_2014__17_4_a2,
     author = {Carroll, C.R.},
     title = {Cyclic products of purely periodic irrationals},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a2/}
}
TY  - JOUR
AU  - Carroll, C.R.
TI  - Cyclic products of purely periodic irrationals
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a2/
LA  - en
ID  - JIS_2014__17_4_a2
ER  - 
%0 Journal Article
%A Carroll, C.R.
%T Cyclic products of purely periodic irrationals
%J Journal of integer sequences
%D 2014
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a2/
%G en
%F JIS_2014__17_4_a2
Carroll, C.R. Cyclic products of purely periodic irrationals. Journal of integer sequences, Tome 17 (2014) no. 4. http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a2/