A simplified binet formula for $k$-generalized Fibonacci numbers
Journal of integer sequences, Tome 17 (2014) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we present a Binet-style formula that can be used to produce the k-generalized Fibonacci numbers (that is, the Tribonaccis, Tetranaccis, etc.). Furthermore, we show that in fact one needs only take the integer closest to the first term of this Binet-style formula in order to generate the desired sequence.
Classification : 11B39, 11C08, 33F05, 65D20
Keywords: k-generalized Fibonacci numbers, binet form, tribonacci number, tetranacci number, pentanacci number
@article{JIS_2014__17_4_a1,
     author = {Dresden, Gregory P.B. and Du, Zhaohui},
     title = {A simplified binet formula for $k$-generalized {Fibonacci} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a1/}
}
TY  - JOUR
AU  - Dresden, Gregory P.B.
AU  - Du, Zhaohui
TI  - A simplified binet formula for $k$-generalized Fibonacci numbers
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a1/
LA  - en
ID  - JIS_2014__17_4_a1
ER  - 
%0 Journal Article
%A Dresden, Gregory P.B.
%A Du, Zhaohui
%T A simplified binet formula for $k$-generalized Fibonacci numbers
%J Journal of integer sequences
%D 2014
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a1/
%G en
%F JIS_2014__17_4_a1
Dresden, Gregory P.B.; Du, Zhaohui. A simplified binet formula for $k$-generalized Fibonacci numbers. Journal of integer sequences, Tome 17 (2014) no. 4. http://geodesic.mathdoc.fr/item/JIS_2014__17_4_a1/