Complementary Bell numbers and $p$-adic series
Journal of integer sequences, Tome 17 (2014) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we generalize a result of Murty on the non-vanishing of complementary Bell numbers and irrationality of a $p$-adic series. This generalization leads to a sequence of polynomials. We partially answer the question of existence of an integral zero of those polynomials.
Classification : 11A07, 40A30
Keywords: p-adic series, complementary Bell number
@article{JIS_2014__17_3_a2,
     author = {Subedi, Deepak},
     title = {Complementary {Bell} numbers and $p$-adic series},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a2/}
}
TY  - JOUR
AU  - Subedi, Deepak
TI  - Complementary Bell numbers and $p$-adic series
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a2/
LA  - en
ID  - JIS_2014__17_3_a2
ER  - 
%0 Journal Article
%A Subedi, Deepak
%T Complementary Bell numbers and $p$-adic series
%J Journal of integer sequences
%D 2014
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a2/
%G en
%F JIS_2014__17_3_a2
Subedi, Deepak. Complementary Bell numbers and $p$-adic series. Journal of integer sequences, Tome 17 (2014) no. 3. http://geodesic.mathdoc.fr/item/JIS_2014__17_3_a2/