Bernoulli numbers and a new binomial transform identity
Journal of integer sequences, Tome 17 (2014) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $(b_{n})_{n \ge 0}$ be the binomial transform of $(a_{n})_{n \ge 0}$. We show how a binomial transformation identity of Chen proves a symmetrical Bernoulli number identity attributed to Carlitz. We then modify Chen's identity to prove a new binomial transformation identity.
Classification : 11B68, 05A10, 11B65
Keywords: Bernoulli number, binomial transform
@article{JIS_2014__17_2_a6,
     author = {Gould, H.W. and Quaintance, Jocelyn},
     title = {Bernoulli numbers and a new binomial transform identity},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_2_a6/}
}
TY  - JOUR
AU  - Gould, H.W.
AU  - Quaintance, Jocelyn
TI  - Bernoulli numbers and a new binomial transform identity
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_2_a6/
LA  - en
ID  - JIS_2014__17_2_a6
ER  - 
%0 Journal Article
%A Gould, H.W.
%A Quaintance, Jocelyn
%T Bernoulli numbers and a new binomial transform identity
%J Journal of integer sequences
%D 2014
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_2_a6/
%G en
%F JIS_2014__17_2_a6
Gould, H.W.; Quaintance, Jocelyn. Bernoulli numbers and a new binomial transform identity. Journal of integer sequences, Tome 17 (2014) no. 2. http://geodesic.mathdoc.fr/item/JIS_2014__17_2_a6/