On the log-concavity of the hyperfibonacci numbers and the hyperlucas numbers
Journal of integer sequences, Tome 17 (2014) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we discuss the properties of the hyperfibonacci numbers $F\_{n}$^[] and hyperlucas numbers _^[r]. We investigate the log-concavity (log-convexity) of hyperfibonacci numbers and hyperlucas numbers. For example, we prove that ${F\_{n}^$[r]_n ge1 is log-concave. In addition, we also study the log-concavity (log-convexity) of generalized hyperfibonacci numbers and hyperlucas numbers.
Keywords: log-convexity, log-concavity, Fibonacci number, Lucas number
@article{JIS_2014__17_1_a5,
     author = {Zheng, Li-Na and Liu, Rui and Zhao, Feng-Zhen},
     title = {On the log-concavity of the hyperfibonacci numbers and the hyperlucas numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a5/}
}
TY  - JOUR
AU  - Zheng, Li-Na
AU  - Liu, Rui
AU  - Zhao, Feng-Zhen
TI  - On the log-concavity of the hyperfibonacci numbers and the hyperlucas numbers
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a5/
LA  - en
ID  - JIS_2014__17_1_a5
ER  - 
%0 Journal Article
%A Zheng, Li-Na
%A Liu, Rui
%A Zhao, Feng-Zhen
%T On the log-concavity of the hyperfibonacci numbers and the hyperlucas numbers
%J Journal of integer sequences
%D 2014
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a5/
%G en
%F JIS_2014__17_1_a5
Zheng, Li-Na; Liu, Rui; Zhao, Feng-Zhen. On the log-concavity of the hyperfibonacci numbers and the hyperlucas numbers. Journal of integer sequences, Tome 17 (2014) no. 1. http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a5/