Periodicity of the last digits of some combinatorial sequences
Journal of integer sequences, Tome 17 (2014) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In 1962 O. A. Gross proved that the last digits of the Fubini numbers (or surjective numbers) have a simple periodicity property. We extend this result to a wider class of combinatorial numbers coming from restricted set partitions.
Classification : 05A18, 11B73
Keywords: Stirling number, r-Stirling number, restricted Stirling number, associated restricted Stirling number, restricted partition, Fubini number, restricted Bell number, restricted factorial, associated Fubini number
@article{JIS_2014__17_1_a1,
     author = {Mez\H{o}, Istv\'an},
     title = {Periodicity of the last digits of some combinatorial sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a1/}
}
TY  - JOUR
AU  - Mező, István
TI  - Periodicity of the last digits of some combinatorial sequences
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a1/
LA  - en
ID  - JIS_2014__17_1_a1
ER  - 
%0 Journal Article
%A Mező, István
%T Periodicity of the last digits of some combinatorial sequences
%J Journal of integer sequences
%D 2014
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a1/
%G en
%F JIS_2014__17_1_a1
Mező, István. Periodicity of the last digits of some combinatorial sequences. Journal of integer sequences, Tome 17 (2014) no. 1. http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a1/