On a congruence of Kimball and Webb involving Lucas sequences
Journal of integer sequences, Tome 17 (2014) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Given a pair $(U_{t})$ and $(V_{t})$ of Lucas sequences, an odd integer $\nu\ge1$, and a prime $p\ge\nu+4$ of maximal rank $\rho_U$, i.e., such that $\rho_U$ is $p$ or $p\pm1$, we show that $\sum_{0t\rho_U}(V_t/U_t)^\nu \equiv0\pmod{p^2}$. This extends a result of Kimball and Webb, who proved the case $\nu=1$. Some further generalizations are also established.
Classification : 11B39, 11A07
Keywords: Lucas sequence, rank of appearance, congruence, Wolstenholme, leudesdorf
@article{JIS_2014__17_1_a0,
     author = {Ballot, Christian},
     title = {On a congruence of {Kimball} and {Webb} involving {Lucas} sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a0/}
}
TY  - JOUR
AU  - Ballot, Christian
TI  - On a congruence of Kimball and Webb involving Lucas sequences
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a0/
LA  - en
ID  - JIS_2014__17_1_a0
ER  - 
%0 Journal Article
%A Ballot, Christian
%T On a congruence of Kimball and Webb involving Lucas sequences
%J Journal of integer sequences
%D 2014
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a0/
%G en
%F JIS_2014__17_1_a0
Ballot, Christian. On a congruence of Kimball and Webb involving Lucas sequences. Journal of integer sequences, Tome 17 (2014) no. 1. http://geodesic.mathdoc.fr/item/JIS_2014__17_1_a0/