The 2-adic order of the tribonacci numbers and the equation $T_n = m!$
Journal of integer sequences, Tome 17 (2014) no. 10.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $(T_{n})_{n \ge 0}$ be the Tribonacci sequence defined by the recurrence $T_{n+2} = T_{n+1} + T_{n} + T_{n-1}$, with $T_{0} = 0$ and $T_{1} = T_{2} = 1$. In this paper, we characterize the 2-adic valuation of $T_{n}$ and, as an application, we completely solve the Diophantine equation $T_{n} = m$!.
Classification : 11B39, 11B50, 11A07
Keywords: tribonacci number, divisibility, 2-adic valuation
@article{JIS_2014__17_10_a0,
     author = {Marques, Diego and Lengyel, Tam\'as},
     title = {The 2-adic order of the tribonacci numbers and the equation $T_n = m!$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {17},
     number = {10},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2014__17_10_a0/}
}
TY  - JOUR
AU  - Marques, Diego
AU  - Lengyel, Tamás
TI  - The 2-adic order of the tribonacci numbers and the equation $T_n = m!$
JO  - Journal of integer sequences
PY  - 2014
VL  - 17
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2014__17_10_a0/
LA  - en
ID  - JIS_2014__17_10_a0
ER  - 
%0 Journal Article
%A Marques, Diego
%A Lengyel, Tamás
%T The 2-adic order of the tribonacci numbers and the equation $T_n = m!$
%J Journal of integer sequences
%D 2014
%V 17
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2014__17_10_a0/
%G en
%F JIS_2014__17_10_a0
Marques, Diego; Lengyel, Tamás. The 2-adic order of the tribonacci numbers and the equation $T_n = m!$. Journal of integer sequences, Tome 17 (2014) no. 10. http://geodesic.mathdoc.fr/item/JIS_2014__17_10_a0/