On Fibonacci and Lucas numbers of the form $cx^2$
Journal of integer sequences, Tome 14 (2011) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, by using some congruences concerning with Fibonacci and Lucas numbers, we completely solve the Diophantine equations $L_{n} = 2L_{m}x^{2}, F_{n} = 2F_{m}x^{2}, L_{n} = 6L_{m}x^{2}, F_{n} = 3F_{m}x^{2}$, and $F_{n} = 6F_{m}x^{2}$.
Classification : 11B37, 11B39
Keywords: Fibonacci numbers, Lucas numbers, congruences
@article{JIS_2011__14_9_a4,
     author = {Keskin, Refik and Yosma, Zafer},
     title = {On {Fibonacci} and {Lucas} numbers of the form $cx^2$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a4/}
}
TY  - JOUR
AU  - Keskin, Refik
AU  - Yosma, Zafer
TI  - On Fibonacci and Lucas numbers of the form $cx^2$
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a4/
LA  - en
ID  - JIS_2011__14_9_a4
ER  - 
%0 Journal Article
%A Keskin, Refik
%A Yosma, Zafer
%T On Fibonacci and Lucas numbers of the form $cx^2$
%J Journal of integer sequences
%D 2011
%V 14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a4/
%G en
%F JIS_2011__14_9_a4
Keskin, Refik; Yosma, Zafer. On Fibonacci and Lucas numbers of the form $cx^2$. Journal of integer sequences, Tome 14 (2011) no. 9. http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a4/