Two $q$-analogues of poly-Stirling numbers
Journal of integer sequences, Tome 14 (2011) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We develop two $q$-analogues of the previously defined poly-Stirling numbers of the first and second kinds. We also develop the corresponding $q$-rook theory models to give combinatorial interpretations to these numbers.
Classification : 05A15, 05E05
Keywords: rook theory, rook placement, file placement, Stirling numbers, poly-Stirling numbers, inverses, q-analogues
@article{JIS_2011__14_9_a1,
     author = {Miceli, Brian K.},
     title = {Two $q$-analogues of {poly-Stirling} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a1/}
}
TY  - JOUR
AU  - Miceli, Brian K.
TI  - Two $q$-analogues of poly-Stirling numbers
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a1/
LA  - en
ID  - JIS_2011__14_9_a1
ER  - 
%0 Journal Article
%A Miceli, Brian K.
%T Two $q$-analogues of poly-Stirling numbers
%J Journal of integer sequences
%D 2011
%V 14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a1/
%G en
%F JIS_2011__14_9_a1
Miceli, Brian K. Two $q$-analogues of poly-Stirling numbers. Journal of integer sequences, Tome 14 (2011) no. 9. http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a1/