A Wieferich prime search up to $6.7 \times 10^{15}$
Journal of integer sequences, Tome 14 (2011) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A Wieferich prime is a prime $p$ such that $2^{p-1} \equiv 1 (mod p^{2})$. Despite several intensive searches, only two Wieferich primes are known: $p = 1093$ and $p = 3511$. This paper describes a new search algorithm for Wieferich primes using double-precision Montgomery arithmetic and a memoryless sieve, which runs significantly faster than previously published algorithms, allowing us to report that there are no other Wieferich primes $p 6.7 \times 10^{15}$. Furthermore, our method allowed for the efficent collection of statistical data on Fermat quotients, leading to a strong empirical confirmation of a conjecture of Crandall, Dilcher, and Pomerance. Our methods proved flexible enough to search for new solutions of $a^{p-1} \equiv 1 (mod p^{2})$ for other small values of $a$, and to extend the search for Fibonacci-Wieferich primes. We conclude, among other things, that there are no Fibonacci-Wieferich primes less than $p 9.7 \times 10^{14}$.
Classification : 11A41, 11Y16, 11Y11
Keywords: wieferich prime, Fibonacci-wieferich prime, wall-Sun-Sun prime, wheel sieve, magic sieve, Montgomery arithmetic
@article{JIS_2011__14_9_a0,
     author = {Dorais, Fran\c{c}ois G. and Klyve, Dominic},
     title = {A {Wieferich} prime search up to $6.7 \times  10^{15}$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a0/}
}
TY  - JOUR
AU  - Dorais, François G.
AU  - Klyve, Dominic
TI  - A Wieferich prime search up to $6.7 \times  10^{15}$
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a0/
LA  - en
ID  - JIS_2011__14_9_a0
ER  - 
%0 Journal Article
%A Dorais, François G.
%A Klyve, Dominic
%T A Wieferich prime search up to $6.7 \times  10^{15}$
%J Journal of integer sequences
%D 2011
%V 14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a0/
%G en
%F JIS_2011__14_9_a0
Dorais, François G.; Klyve, Dominic. A Wieferich prime search up to $6.7 \times  10^{15}$. Journal of integer sequences, Tome 14 (2011) no. 9. http://geodesic.mathdoc.fr/item/JIS_2011__14_9_a0/