Sums involving moments of reciprocals of binomial coefficients
Journal of integer sequences, Tome 14 (2011) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate sums of the form $ \sum_{0\leq k\leq n}k^{m}\binom{n}{k}^{-1}.$ We establish a recurrence relation and compute its ordinary generating function. As application we give the asymptotic expansion. The results extend the earlier works by various authors. In the last section, we establish that $ \sum_{0\leq k\leq n} \frac{k^{m}}{n^m} \binom{n}{k}^{-1}$ tends to 1 as $ n \rightarrow \infty$ and that $ \sum_{0\leq k\leq n-m}k^{m}\binom{n}{k}^{-1}$ tends to $ m!$ as $ n \rightarrow \infty$.
Keywords: binomial coefficient, recurrence relation, generating function, asymptotic expansion
@article{JIS_2011__14_6_a1,
     author = {Belbachir, Hac\`ene and Rahmani, Mourad and Sury, B.},
     title = {Sums involving moments of reciprocals of binomial coefficients},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_6_a1/}
}
TY  - JOUR
AU  - Belbachir, Hacène
AU  - Rahmani, Mourad
AU  - Sury, B.
TI  - Sums involving moments of reciprocals of binomial coefficients
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_6_a1/
LA  - en
ID  - JIS_2011__14_6_a1
ER  - 
%0 Journal Article
%A Belbachir, Hacène
%A Rahmani, Mourad
%A Sury, B.
%T Sums involving moments of reciprocals of binomial coefficients
%J Journal of integer sequences
%D 2011
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_6_a1/
%G en
%F JIS_2011__14_6_a1
Belbachir, Hacène; Rahmani, Mourad; Sury, B. Sums involving moments of reciprocals of binomial coefficients. Journal of integer sequences, Tome 14 (2011) no. 6. http://geodesic.mathdoc.fr/item/JIS_2011__14_6_a1/