Quasi-amicable numbers are rare
Journal of integer sequences, Tome 14 (2011) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Define a quasi-amicable pair as a pair of distinct natural numbers each of which is the sum of the nontrivial divisors of the other, e.g., ${48, 75}$. Here $nontrivial$ excludes both 1 and the number itself. Quasi-amicable pairs have been studied (primarily empirically) by Garcia, Beck and Najar, Lal and Forbes, and Hagis and Lord. We prove that the set of $n$ belonging to a quasi-amicable pair has asymptotic density zero.
Classification : 11A25, 11N37
Keywords: aliquot sequence, quasi-aliquot sequence, quasi-amicable pair, augmented amicable pair
@article{JIS_2011__14_5_a2,
     author = {Pollack, Paul},
     title = {Quasi-amicable numbers are rare},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a2/}
}
TY  - JOUR
AU  - Pollack, Paul
TI  - Quasi-amicable numbers are rare
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a2/
LA  - en
ID  - JIS_2011__14_5_a2
ER  - 
%0 Journal Article
%A Pollack, Paul
%T Quasi-amicable numbers are rare
%J Journal of integer sequences
%D 2011
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a2/
%G en
%F JIS_2011__14_5_a2
Pollack, Paul. Quasi-amicable numbers are rare. Journal of integer sequences, Tome 14 (2011) no. 5. http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a2/