Integer sequences, functions of slow increase, and the Bell numbers
Journal of integer sequences, Tome 14 (2011) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we first prove a general theorem on integer sequences $ A_n$ such that the following asymptotic formula holds
Classification : 11B99, 11B73
Keywords: functions of slow increase, integer sequences, Bell numbers
@article{JIS_2011__14_5_a1,
     author = {Jakimczuk, Rafael},
     title = {Integer sequences, functions of slow increase, and the {Bell} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a1/}
}
TY  - JOUR
AU  - Jakimczuk, Rafael
TI  - Integer sequences, functions of slow increase, and the Bell numbers
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a1/
LA  - en
ID  - JIS_2011__14_5_a1
ER  - 
%0 Journal Article
%A Jakimczuk, Rafael
%T Integer sequences, functions of slow increase, and the Bell numbers
%J Journal of integer sequences
%D 2011
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a1/
%G en
%F JIS_2011__14_5_a1
Jakimczuk, Rafael. Integer sequences, functions of slow increase, and the Bell numbers. Journal of integer sequences, Tome 14 (2011) no. 5. http://geodesic.mathdoc.fr/item/JIS_2011__14_5_a1/