Formulas for odd zeta values and powers of $\pi $
Journal of integer sequences, Tome 14 (2011) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Plouffe conjectured fast converging series formulas for $\pi ^{2n+1}$ and $\zeta (2n+1)$ for small values of $n$. We find the general pattern for all integer values of $n$ and offer a proof.
Classification : 11Y60
Keywords: $\pi $, Riemann zeta function
@article{JIS_2011__14_2_a2,
     author = {Chamberland, Marc and Lopatto, Patrick},
     title = {Formulas for odd zeta values and powers of $\pi $},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a2/}
}
TY  - JOUR
AU  - Chamberland, Marc
AU  - Lopatto, Patrick
TI  - Formulas for odd zeta values and powers of $\pi $
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a2/
LA  - en
ID  - JIS_2011__14_2_a2
ER  - 
%0 Journal Article
%A Chamberland, Marc
%A Lopatto, Patrick
%T Formulas for odd zeta values and powers of $\pi $
%J Journal of integer sequences
%D 2011
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a2/
%G en
%F JIS_2011__14_2_a2
Chamberland, Marc; Lopatto, Patrick. Formulas for odd zeta values and powers of $\pi $. Journal of integer sequences, Tome 14 (2011) no. 2. http://geodesic.mathdoc.fr/item/JIS_2011__14_2_a2/