Arithmetic progressions on Edwards curves
Journal of integer sequences, Tome 14 (2011) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We look at arithmetic progressions on elliptic curves known as Edwards curves. By an arithmetic progression on an elliptic curve, we mean that the $x$-coordinates of a sequence of rational points on the curve form an arithmetic progression. Previous work has found arithmetic progressions on Weierstrass curves, quartic curves, and genus 2 curves. We find an infinite number of Edwards curves with an arithmetic progression of length 9.
Classification : 11G05, 11B25
Keywords: arithmetic progression, elliptic curve, edwards curve
@article{JIS_2011__14_1_a7,
     author = {Moody, Dustin},
     title = {Arithmetic progressions on {Edwards} curves},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a7/}
}
TY  - JOUR
AU  - Moody, Dustin
TI  - Arithmetic progressions on Edwards curves
JO  - Journal of integer sequences
PY  - 2011
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a7/
LA  - en
ID  - JIS_2011__14_1_a7
ER  - 
%0 Journal Article
%A Moody, Dustin
%T Arithmetic progressions on Edwards curves
%J Journal of integer sequences
%D 2011
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a7/
%G en
%F JIS_2011__14_1_a7
Moody, Dustin. Arithmetic progressions on Edwards curves. Journal of integer sequences, Tome 14 (2011) no. 1. http://geodesic.mathdoc.fr/item/JIS_2011__14_1_a7/