Exponential Riordan arrays and permutation enumeration
Journal of integer sequences, Tome 13 (2010) no. 9.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that the generating function of the symmetric group with respect to five particular statistics gives rise to an exponential Riordan array, whose inverse is the coefficient array of the associated orthogonal polynomials. This also provides us with an LDU factorization of the Hankel matrix of the associated moments.
Classification : 05A15, 42C05, 11B83, 11C20, 15B05, 15B36, 20B30, 33C45
Keywords: permutation, integer sequence, orthogonal polynomials, moments, exponential riordan array, Hankel determinant, Hankel transform
@article{JIS_2010__13_9_a1,
     author = {Barry, Paul},
     title = {Exponential {Riordan} arrays and permutation enumeration},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a1/}
}
TY  - JOUR
AU  - Barry, Paul
TI  - Exponential Riordan arrays and permutation enumeration
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a1/
LA  - en
ID  - JIS_2010__13_9_a1
ER  - 
%0 Journal Article
%A Barry, Paul
%T Exponential Riordan arrays and permutation enumeration
%J Journal of integer sequences
%D 2010
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a1/
%G en
%F JIS_2010__13_9_a1
Barry, Paul. Exponential Riordan arrays and permutation enumeration. Journal of integer sequences, Tome 13 (2010) no. 9. http://geodesic.mathdoc.fr/item/JIS_2010__13_9_a1/