A new solution to the equation $\tau (p) \equiv 0$ (mod $p$)
Journal of integer sequences, Tome 13 (2010) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The known solutions to the equation $\tau (p) \equiv 0 (mod p)$ were $p = 2, 3, 5$, 7, and 2411. Here we present our method to compute the next solution, which is $p = 7758337633$. There are no other solutions up to $10^{10}$.
Keywords: tau function, non-ordinary primes, eichler-Selberg trace formula, Hurwitz sums, Catalan triangle, Ramanujan function, computation record
@article{JIS_2010__13_7_a7,
     author = {Lygeros, Nik and Rozier, Olivier},
     title = {A new solution to the equation $\tau (p) \equiv 0$ (mod $p$)},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a7/}
}
TY  - JOUR
AU  - Lygeros, Nik
AU  - Rozier, Olivier
TI  - A new solution to the equation $\tau (p) \equiv 0$ (mod $p$)
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a7/
LA  - en
ID  - JIS_2010__13_7_a7
ER  - 
%0 Journal Article
%A Lygeros, Nik
%A Rozier, Olivier
%T A new solution to the equation $\tau (p) \equiv 0$ (mod $p$)
%J Journal of integer sequences
%D 2010
%V 13
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a7/
%G en
%F JIS_2010__13_7_a7
Lygeros, Nik; Rozier, Olivier. A new solution to the equation $\tau (p) \equiv 0$ (mod $p$). Journal of integer sequences, Tome 13 (2010) no. 7. http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a7/