Relatively prime sets and a phi function for subsets of $\{1, 2,\dots, n\}$
Journal of integer sequences, Tome 13 (2010) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A nonempty subset $A$ of ${1, 2, \dots , n}$ is said to be relatively prime if $gcd(A) = 1$. Let $f(n)$ and $f_{k}(n)$ denote the number of relatively prime subsets and the number of relatively prime subsets of cardinality $k$ of ${1, 2, \dots , n}$, respectively. Let $\Phi (n)$ and $\Phi _{k}(n)$ denote the number of nonempty subsets and the number of subsets of cardinality $k$ of ${1, 2, \dots , n}$ such that $gcd(A)$ is relatively prime to $n$, respectively. In this paper, we obtain some properties of these functions.
Classification : 11A25, 11B75
Keywords: relatively prime subset, Euler phi function
@article{JIS_2010__13_7_a3,
     author = {Tang, Min},
     title = {Relatively prime sets and a phi function for subsets of $\{1, 2,\dots, n\}$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a3/}
}
TY  - JOUR
AU  - Tang, Min
TI  - Relatively prime sets and a phi function for subsets of $\{1, 2,\dots, n\}$
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a3/
LA  - en
ID  - JIS_2010__13_7_a3
ER  - 
%0 Journal Article
%A Tang, Min
%T Relatively prime sets and a phi function for subsets of $\{1, 2,\dots, n\}$
%J Journal of integer sequences
%D 2010
%V 13
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a3/
%G en
%F JIS_2010__13_7_a3
Tang, Min. Relatively prime sets and a phi function for subsets of $\{1, 2,\dots, n\}$. Journal of integer sequences, Tome 13 (2010) no. 7. http://geodesic.mathdoc.fr/item/JIS_2010__13_7_a3/