On the shifted product of binary recurrences
Journal of integer sequences, Tome 13 (2010) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The present paper studies the diophantine equation $G_{n}H_{n} + c = x_{2n}$ and related questions, where the integer binary recurrence sequences ${G}, {H}$, and ${x}$ satisfy the same recurrence relation, and $c$ is a given integer. We prove necessary and sufficient conditions for the solubility of $G_{n}H_{n} + c = x_{2n}$. Finally, a few relevant examples are provided.
Classification : 11B39, 11D61
Keywords: binary recurrence
@article{JIS_2010__13_6_a3,
     author = {Khadir, Omar and Liptai, K\'alm\'an and Szalay, L\'aszl\'o},
     title = {On the shifted product of binary recurrences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a3/}
}
TY  - JOUR
AU  - Khadir, Omar
AU  - Liptai, Kálmán
AU  - Szalay, László
TI  - On the shifted product of binary recurrences
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a3/
LA  - en
ID  - JIS_2010__13_6_a3
ER  - 
%0 Journal Article
%A Khadir, Omar
%A Liptai, Kálmán
%A Szalay, László
%T On the shifted product of binary recurrences
%J Journal of integer sequences
%D 2010
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a3/
%G en
%F JIS_2010__13_6_a3
Khadir, Omar; Liptai, Kálmán; Szalay, László. On the shifted product of binary recurrences. Journal of integer sequences, Tome 13 (2010) no. 6. http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a3/