Six little squares and how their numbers grow
Journal of integer sequences, Tome 13 (2010) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We count the $3 \times 3$ magic, semimagic, and magilatin squares, as functions either of the magic sum or of an upper bound on the entries in the square. Our results on magic and semimagic squares differ from previous ones, in that we require the entries in the square to be distinct from each other and we derive our results not by ad hoc reasoning, but from the general geometric and algebraic method of our paper "An enumerative geometry for magic and magilatin labellings". Here we illustrate that method with a detailed analysis of $3 \times 3$ squares.
Classification : 05B15, 05A15, 52B20, 52C35
Keywords: magic square, semimagic square, magic graph, Latin square, magilatin square, lattice-point counting, rational convex polytope, arrangement of hyperplanes
@article{JIS_2010__13_6_a0,
     author = {Beck, Matthias and Zaslavsky, Thomas},
     title = {Six little squares and how their numbers grow},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a0/}
}
TY  - JOUR
AU  - Beck, Matthias
AU  - Zaslavsky, Thomas
TI  - Six little squares and how their numbers grow
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a0/
LA  - en
ID  - JIS_2010__13_6_a0
ER  - 
%0 Journal Article
%A Beck, Matthias
%A Zaslavsky, Thomas
%T Six little squares and how their numbers grow
%J Journal of integer sequences
%D 2010
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a0/
%G en
%F JIS_2010__13_6_a0
Beck, Matthias; Zaslavsky, Thomas. Six little squares and how their numbers grow. Journal of integer sequences, Tome 13 (2010) no. 6. http://geodesic.mathdoc.fr/item/JIS_2010__13_6_a0/