On the sum of reciprocals of numbers satisfying a recurrence relation of order $s$
Journal of integer sequences, Tome 13 (2010) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We discuss the partial infinite sum $ \sum_{k=n}^{\infty}u_k^{-s}$ for some positive integer $ n$, where $ u_k$ satisfies a recurrence relation of order $ s, u_n= a u_{n-1}+u_{n-2}+\cdots+u_{n-s} ( n\ge s)$, with initial values $ u_0\ge 0, u_k\in\mathbb{N} ( 0\le k\le s-1)$, where $ a$ and $ s(\ge 2)$ are positive integers. If $ a=1, s=2$, and $ u_0=0, u_1=1$, then $ u_k=F_k$ is the $ k$-th Fibonacci number. Our results include some extensions of Ohtsuka and Nakamura. We also consider continued fraction expansions that include such infinite sums.
Classification : 11A55, 11B39
Keywords: Fibonacci numbers, recurrence relations of s-th order, partial infinite sum
@article{JIS_2010__13_5_a7,
     author = {Komatsu, Takao and Laohakosol, Vichian},
     title = {On the sum of reciprocals of numbers satisfying a recurrence relation of order $s$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_5_a7/}
}
TY  - JOUR
AU  - Komatsu, Takao
AU  - Laohakosol, Vichian
TI  - On the sum of reciprocals of numbers satisfying a recurrence relation of order $s$
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_5_a7/
LA  - en
ID  - JIS_2010__13_5_a7
ER  - 
%0 Journal Article
%A Komatsu, Takao
%A Laohakosol, Vichian
%T On the sum of reciprocals of numbers satisfying a recurrence relation of order $s$
%J Journal of integer sequences
%D 2010
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_5_a7/
%G en
%F JIS_2010__13_5_a7
Komatsu, Takao; Laohakosol, Vichian. On the sum of reciprocals of numbers satisfying a recurrence relation of order $s$. Journal of integer sequences, Tome 13 (2010) no. 5. http://geodesic.mathdoc.fr/item/JIS_2010__13_5_a7/