Mean values of a gcd-sum function over regular integers modulo $n$
Journal of integer sequences, Tome 13 (2010) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study the mean value of a gcd-sum function over regular integers modulo $n$. In particular, we improve the previous result under the Riemann hypothesis (RH). We also study the short interval problem for it without assuming RH.
Classification : 11N37
Keywords: gcd-sum function, regular integers modulo n, Riemann hypothesis, short interval result
@article{JIS_2010__13_4_a7,
     author = {Zhang, Deyu and Zhai, Wenguang},
     title = {Mean values of a gcd-sum function over regular integers modulo $n$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a7/}
}
TY  - JOUR
AU  - Zhang, Deyu
AU  - Zhai, Wenguang
TI  - Mean values of a gcd-sum function over regular integers modulo $n$
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a7/
LA  - en
ID  - JIS_2010__13_4_a7
ER  - 
%0 Journal Article
%A Zhang, Deyu
%A Zhai, Wenguang
%T Mean values of a gcd-sum function over regular integers modulo $n$
%J Journal of integer sequences
%D 2010
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a7/
%G en
%F JIS_2010__13_4_a7
Zhang, Deyu; Zhai, Wenguang. Mean values of a gcd-sum function over regular integers modulo $n$. Journal of integer sequences, Tome 13 (2010) no. 4. http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a7/