Pell's equation without irrational numbers
Journal of integer sequences, Tome 13 (2010) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a simple way to generate an infinite number of solutions to Pell's equation $x^{2} - D y^{2} = 1$, requiring only basic matrix arithmetic and no knowledge of irrational numbers. We illustrate the method for $D = 2$,7 and 61. Connections to the Stern-Brocot tree and universal geometry are also discussed.
Classification : 11D09, 11E16
Keywords: pell's equation, quadratic form, stern-brocot tree, universal geometry
@article{JIS_2010__13_4_a6,
     author = {Wildberger, N.J.},
     title = {Pell's equation without irrational numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a6/}
}
TY  - JOUR
AU  - Wildberger, N.J.
TI  - Pell's equation without irrational numbers
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a6/
LA  - en
ID  - JIS_2010__13_4_a6
ER  - 
%0 Journal Article
%A Wildberger, N.J.
%T Pell's equation without irrational numbers
%J Journal of integer sequences
%D 2010
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a6/
%G en
%F JIS_2010__13_4_a6
Wildberger, N.J. Pell's equation without irrational numbers. Journal of integer sequences, Tome 13 (2010) no. 4. http://geodesic.mathdoc.fr/item/JIS_2010__13_4_a6/