Sets with even partition functions and 2-adic integers. II.
Journal of integer sequences, Tome 13 (2010) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For $ P\in \mathbb{F}_2[z]$ with $ P(0)=1$ and $ \deg(P)\geq 1$, let $ {\cal A}={\cal A}(P)$ be the unique subset of $ \mathbb{N}$ such that $ \sum_{n\geq 0}p({\cal A},n)z^n\equiv P(z) (mod 2)$, where $ p({\cal A},n)$ is the number of partitions of $ n$ with parts in $ {\cal A}$. Let $ p$ be an odd prime number, and let $ P$ be irreducible of order $ p$ ; i.e., $ p$ is the smallest positive integer such that $ P$ divides $ 1+z^p$ in $ _2[z]$. N. Baccar proved that the elements of $ {\cal A}(P)$ of the form $ 2^km$, where $ k\geq 0$ and $ m$ is odd, are given by the 2-adic expansion of a zero of some polynomial $ R_m$ with integer coefficients. Let $ s_p$ be the order of 2 modulo $ p$, i.e., the smallest positive integer such that $ 2^{s_p}\equiv 1 (mod p)$. Improving on the method with which $ R_m$ was obtained explicitly only when $ s_p=\frac{p-1}{2}$, here we make explicit $ R_m$ when $ s_p=\frac{p-1}{3}$. For that, we have used the number of points of the elliptic curve $ x^3+ay^3 =1 $ modulo $ p$.
Classification : 11P83, 11B50, 11D88, 11G20
Keywords: partitions, periodic sequences, order of a polynomial, cyclotomic polynomials, resultant, 2-adic integers, elliptic curves
@article{JIS_2010__13_1_a5,
     author = {Baccar, N. and Zekraoui, A.},
     title = {Sets with even partition functions and 2-adic integers. {II.}},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a5/}
}
TY  - JOUR
AU  - Baccar, N.
AU  - Zekraoui, A.
TI  - Sets with even partition functions and 2-adic integers. II.
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a5/
LA  - en
ID  - JIS_2010__13_1_a5
ER  - 
%0 Journal Article
%A Baccar, N.
%A Zekraoui, A.
%T Sets with even partition functions and 2-adic integers. II.
%J Journal of integer sequences
%D 2010
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a5/
%G en
%F JIS_2010__13_1_a5
Baccar, N.; Zekraoui, A. Sets with even partition functions and 2-adic integers. II.. Journal of integer sequences, Tome 13 (2010) no. 1. http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a5/