Functions of slow increase and integer sequences
Journal of integer sequences, Tome 13 (2010) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study some properties of functions that satisfy the condition $f'(x)=o\left(\frac{f(x)}{x}\right)$, for $ x\rightarrow \infty $, i.e., $\lim_{x\rightarrow \infty}\frac{ f'(x)}{\frac{f(x)}{x}}= 0$. We call these "functions of slow increase", since they satisfy the condition $\lim_{x\rightarrow \infty}\frac{f(x)}{x^{\alpha}} =0$ for all $\alpha>0$. A typical example of a function of slow increase is the function $f(x)= \log x$. As an application, we obtain some general results on sequence $A_n$ of positive integers that satisfy the asymptotic formula $A_n \sim n^s f(n)$, where $f(x)$ is a function of slow increase.
Classification : 11B99, 11N45
Keywords: functions of slow increase, integer sequences, asymptotic formulas
@article{JIS_2010__13_1_a4,
     author = {Jakimczuk, Rafael},
     title = {Functions of slow increase and integer sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a4/}
}
TY  - JOUR
AU  - Jakimczuk, Rafael
TI  - Functions of slow increase and integer sequences
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a4/
LA  - en
ID  - JIS_2010__13_1_a4
ER  - 
%0 Journal Article
%A Jakimczuk, Rafael
%T Functions of slow increase and integer sequences
%J Journal of integer sequences
%D 2010
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a4/
%G en
%F JIS_2010__13_1_a4
Jakimczuk, Rafael. Functions of slow increase and integer sequences. Journal of integer sequences, Tome 13 (2010) no. 1. http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a4/