Running modulus recursions
Journal of integer sequences, Tome 13 (2010) no. 1.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Fix integers $b \ge 2$ and $k \ge 1$. Define the sequence ${z_{n}}$ recursively by taking $z_{0}$ to be any integer, and for $n \ge 1$, taking $z_{n}$ to be the least nonnegative residue of $bz_{n-1}$ modulo $(n+k)$. Since the modulus increases by 1 when stepping from one term to the next, such a definition will be called a running modulus recursion or $rumor$ for short. While the terms of such sequences appear to bounce around irregularly, empirical evidence suggests the terms will eventually be zero. We prove this is so when one additional assumption is made, and we conjecture that this additional condition is always met.
Classification : 11B37, 11B50
Keywords: recurrence sequence, recurrence relation modulo m, josephus problem, running modulus recursion
@article{JIS_2010__13_1_a3,
     author = {Dearden, Bruce and Metzger, Jerry},
     title = {Running modulus recursions},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a3/}
}
TY  - JOUR
AU  - Dearden, Bruce
AU  - Metzger, Jerry
TI  - Running modulus recursions
JO  - Journal of integer sequences
PY  - 2010
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a3/
LA  - en
ID  - JIS_2010__13_1_a3
ER  - 
%0 Journal Article
%A Dearden, Bruce
%A Metzger, Jerry
%T Running modulus recursions
%J Journal of integer sequences
%D 2010
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a3/
%G en
%F JIS_2010__13_1_a3
Dearden, Bruce; Metzger, Jerry. Running modulus recursions. Journal of integer sequences, Tome 13 (2010) no. 1. http://geodesic.mathdoc.fr/item/JIS_2010__13_1_a3/