Ramanujan type trigonometric formulas: the general form for the argument $\frac{2\pi}{7}$
Journal of integer sequences, Tome 12 (2009) no. 8.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we present many general identities connected with the classical Ramanujan equality. Moreover, we give Binet formulas for an accelerator sequence for Catalan's constant.
Classification : 11B37, 11B83, 11Y55, 33B10
Keywords: Ramanujan equalities, trigonometric recurrences
@article{JIS_2009__12_8_a2,
     author = {Witu{\l}a, Roman},
     title = {Ramanujan type trigonometric formulas: the general form for the argument $\frac{2\pi}{7}$},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_8_a2/}
}
TY  - JOUR
AU  - Wituła, Roman
TI  - Ramanujan type trigonometric formulas: the general form for the argument $\frac{2\pi}{7}$
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_8_a2/
LA  - en
ID  - JIS_2009__12_8_a2
ER  - 
%0 Journal Article
%A Wituła, Roman
%T Ramanujan type trigonometric formulas: the general form for the argument $\frac{2\pi}{7}$
%J Journal of integer sequences
%D 2009
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_8_a2/
%G en
%F JIS_2009__12_8_a2
Wituła, Roman. Ramanujan type trigonometric formulas: the general form for the argument $\frac{2\pi}{7}$. Journal of integer sequences, Tome 12 (2009) no. 8. http://geodesic.mathdoc.fr/item/JIS_2009__12_8_a2/