Generalized Catalan numbers: linear recursion and divisibility
Journal of integer sequences, Tome 12 (2009) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove a $linear$ recursion for the generalized Catalan numbers $C_a(n) := \frac{1}{(a-1)n+1} {an \choose n}$ when $a \geq 2$. As a consequence, we show $p \, \vert \, C_p(n)$ if and only if $n \neq \frac{p^k-1}{p-1}$ for all integers $k \geq 0$. This is a generalization of the well-known result that the usual Catalan number $C_2(n)$ is odd if and only if $n$ is a Mersenne number $2^k-1$. Using certain beautiful results of Kummer and Legendre, we give a second proof of the divisibility result for $C_p(n)$. We also give suitably formulated inductive proofs of Kummer's and Legendre's formulae which are different from the standard proofs.
Classification : 05A10, 11B83
Keywords: generalized Catalan numbers, linear recursion, divisibility
@article{JIS_2009__12_7_a3,
     author = {Sury, B.},
     title = {Generalized {Catalan} numbers: linear recursion and divisibility},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a3/}
}
TY  - JOUR
AU  - Sury, B.
TI  - Generalized Catalan numbers: linear recursion and divisibility
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a3/
LA  - en
ID  - JIS_2009__12_7_a3
ER  - 
%0 Journal Article
%A Sury, B.
%T Generalized Catalan numbers: linear recursion and divisibility
%J Journal of integer sequences
%D 2009
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a3/
%G en
%F JIS_2009__12_7_a3
Sury, B. Generalized Catalan numbers: linear recursion and divisibility. Journal of integer sequences, Tome 12 (2009) no. 7. http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a3/