Bell and Stirling numbers for graphs
Journal of integer sequences, Tome 12 (2009) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Bell number $B(G)$ of a simple graph $G$ is the number of partitions of its vertex set whose blocks are independent sets of $G$. The number of these partitions with $k$ blocks is the (graphical) Stirling number $S(G,k)$ of $G$. We explore integer sequences of Bell numbers for various one-parameter families of graphs, generalizations of the relation $B(P_{n}) = B(E_{n-1})$ for path and edgeless graphs, one-parameter graph families whose Bell number sequences are quasigeometric, and relations among the polynomial $A(G,\alpha ) = \Sigma S(G,k) \alpha ^{k}$, the chromatic polynomial and the Tutte polynomial, and some implications of these relations.
Classification : 05A18, 05A15, 05B35, 05C05, 05C50, 05C85
Keywords: simple graph, stable partition, graphical Bell number, graphical Stirling number, chromatic polynomial, matroid, tutte polynomial
@article{JIS_2009__12_7_a2,
     author = {Duncan, Bryce and Peele, Rhodes},
     title = {Bell and {Stirling} numbers for graphs},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a2/}
}
TY  - JOUR
AU  - Duncan, Bryce
AU  - Peele, Rhodes
TI  - Bell and Stirling numbers for graphs
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a2/
LA  - en
ID  - JIS_2009__12_7_a2
ER  - 
%0 Journal Article
%A Duncan, Bryce
%A Peele, Rhodes
%T Bell and Stirling numbers for graphs
%J Journal of integer sequences
%D 2009
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a2/
%G en
%F JIS_2009__12_7_a2
Duncan, Bryce; Peele, Rhodes. Bell and Stirling numbers for graphs. Journal of integer sequences, Tome 12 (2009) no. 7. http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a2/