Continued fractions and transformations of integer sequences
Journal of integer sequences, Tome 12 (2009) no. 7.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show how various transformations of integer sequences, normally realized by Riordan or generalized Riordan arrays, can be translated into continued fraction form. We also examine the Deleham number triangle construction using bi-variate continued fractions, giving examples from the field of associahedra.
Keywords: integer sequence, riordan array, continued fraction, generating function, linear transformation, deleham construction
@article{JIS_2009__12_7_a1,
     author = {Barry, Paul},
     title = {Continued fractions and transformations of integer sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a1/}
}
TY  - JOUR
AU  - Barry, Paul
TI  - Continued fractions and transformations of integer sequences
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a1/
LA  - en
ID  - JIS_2009__12_7_a1
ER  - 
%0 Journal Article
%A Barry, Paul
%T Continued fractions and transformations of integer sequences
%J Journal of integer sequences
%D 2009
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a1/
%G en
%F JIS_2009__12_7_a1
Barry, Paul. Continued fractions and transformations of integer sequences. Journal of integer sequences, Tome 12 (2009) no. 7. http://geodesic.mathdoc.fr/item/JIS_2009__12_7_a1/