A note on perfect totient numbers
Journal of integer sequences, Tome 12 (2009) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this note we prove that there are no perfect totient numbers of the form $3^{k}p, k \ge 4$, where $s = 2^{a} 3^{b} + 1, r = 2^{c} 3^{d} s + 1, q = 2^{e} 3^{f} r + 1$, and $p = 2^{g} 3^{h} q + 1$ are primes with $a,c,e,g \ge 1$, and $b,d,f,h \ge 0$.
Classification : 11A25
Keywords: totient, perfect totient number, Diophantine equation
@article{JIS_2009__12_6_a6,
     author = {Deng, Moujie},
     title = {A note on perfect totient numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a6/}
}
TY  - JOUR
AU  - Deng, Moujie
TI  - A note on perfect totient numbers
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a6/
LA  - en
ID  - JIS_2009__12_6_a6
ER  - 
%0 Journal Article
%A Deng, Moujie
%T A note on perfect totient numbers
%J Journal of integer sequences
%D 2009
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a6/
%G en
%F JIS_2009__12_6_a6
Deng, Moujie. A note on perfect totient numbers. Journal of integer sequences, Tome 12 (2009) no. 6. http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a6/