Compression theorems for periodic tilings and consequences
Journal of integer sequences, Tome 12 (2009) no. 6.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a weighted square-and-domino tiling model obtained by assigning real number weights to the cells and boundaries of an $n$-board. An important special case apparently arises when these weights form periodic sequences. When the weights of an $n$m-tiling form sequences having period $m$, it is shown that such a tiling may be regarded as a meta-tiling of length $n$ whose weights have period 1 except for the first cell (i.e., are constant). We term such a contraction of the period in going from the longer to the shorter tiling as "period compression". It turns out that period compression allows one to provide combinatorial interpretations for certain identities involving continued fractions as well as for several identities involving Fibonacci and Lucas numbers (and their generalizations).
Classification : 11B39, 05A19
Keywords: continued fraction, polynomial generalization, Fibonacci number, Lucas number, tiling
@article{JIS_2009__12_6_a2,
     author = {Benjamin, Arthur T. and Eustis, Alex K. and Shattuck, Mark A.},
     title = {Compression theorems for periodic tilings and consequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a2/}
}
TY  - JOUR
AU  - Benjamin, Arthur T.
AU  - Eustis, Alex K.
AU  - Shattuck, Mark A.
TI  - Compression theorems for periodic tilings and consequences
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a2/
LA  - en
ID  - JIS_2009__12_6_a2
ER  - 
%0 Journal Article
%A Benjamin, Arthur T.
%A Eustis, Alex K.
%A Shattuck, Mark A.
%T Compression theorems for periodic tilings and consequences
%J Journal of integer sequences
%D 2009
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a2/
%G en
%F JIS_2009__12_6_a2
Benjamin, Arthur T.; Eustis, Alex K.; Shattuck, Mark A. Compression theorems for periodic tilings and consequences. Journal of integer sequences, Tome 12 (2009) no. 6. http://geodesic.mathdoc.fr/item/JIS_2009__12_6_a2/