On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function
Journal of integer sequences, Tome 12 (2009) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give combinatorial-type formulae for the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function and prove asymptotic formulae for the latter one and for another related function.
Classification : 11A25, 11N37, 05A15
Keywords: Euler's arithmetical function, M$\ddot $obius function, divisor function, gcd-sum function, unitary divisor, average order
@article{JIS_2009__12_5_a6,
     author = {T\'oth, L\'aszl\'o},
     title = {On the bi-unitary analogues of {Euler's} arithmetical function and the gcd-sum function},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a6/}
}
TY  - JOUR
AU  - Tóth, László
TI  - On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a6/
LA  - en
ID  - JIS_2009__12_5_a6
ER  - 
%0 Journal Article
%A Tóth, László
%T On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function
%J Journal of integer sequences
%D 2009
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a6/
%G en
%F JIS_2009__12_5_a6
Tóth, László. On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function. Journal of integer sequences, Tome 12 (2009) no. 5. http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a6/