Generalized near-Bell numbers
Journal of integer sequences, Tome 12 (2009) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The $n$th near-Bell number, as defined by Beck, enumerates all possible partitions of an $n$-multiset with multiplicities 1,1,1,$\dots ,1,2$. In this paper we study the sequences arising from a generalization of the near-Bell numbers, and provide a method for obtaining both their exponential and their ordinary generating functions. We derive various interesting relationships amongst both the generating functions and the sequences, and then show how to extend these results to deal with more general multisets.
Classification : 05A15, 05A18, 11B73, 11B37
Keywords: Bell numbers, near-Bell numbers, exponential generating functions, ordinary generating functions, multisets, partitions, recurrence relations
@article{JIS_2009__12_5_a3,
     author = {Griffiths, Martin},
     title = {Generalized {near-Bell} numbers},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a3/}
}
TY  - JOUR
AU  - Griffiths, Martin
TI  - Generalized near-Bell numbers
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a3/
LA  - en
ID  - JIS_2009__12_5_a3
ER  - 
%0 Journal Article
%A Griffiths, Martin
%T Generalized near-Bell numbers
%J Journal of integer sequences
%D 2009
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a3/
%G en
%F JIS_2009__12_5_a3
Griffiths, Martin. Generalized near-Bell numbers. Journal of integer sequences, Tome 12 (2009) no. 5. http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a3/