The number of crossings in a regular drawing of the complete bipartite graph
Journal of integer sequences, Tome 12 (2009) no. 5.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The regular drawing of the complete bipartite graph $K_{n,n}$ produces a striking pattern comprising simple and multiple crossings. We compute the number $c(n)$ of crossings and give an asymptotic estimate for this sequence.
Classification : 05C62, 11A05
Keywords: complete bipartite graph, greatest common divisor
@article{JIS_2009__12_5_a2,
     author = {Legendre, St\'ephane},
     title = {The number of crossings in a regular drawing of the complete bipartite graph},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a2/}
}
TY  - JOUR
AU  - Legendre, Stéphane
TI  - The number of crossings in a regular drawing of the complete bipartite graph
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a2/
LA  - en
ID  - JIS_2009__12_5_a2
ER  - 
%0 Journal Article
%A Legendre, Stéphane
%T The number of crossings in a regular drawing of the complete bipartite graph
%J Journal of integer sequences
%D 2009
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a2/
%G en
%F JIS_2009__12_5_a2
Legendre, Stéphane. The number of crossings in a regular drawing of the complete bipartite graph. Journal of integer sequences, Tome 12 (2009) no. 5. http://geodesic.mathdoc.fr/item/JIS_2009__12_5_a2/