Realizability of integer sequences as differences of fixed point count sequences
Journal of integer sequences, Tome 12 (2009) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A sequence of non-negative integers is exactly realizable as the fixed point counts sequence of a dynamical system if and only if it gives rise to a sequence of non-negative orbit counts. This provides a simple realizability criterion based on the transformation between fixed point and orbit counts. Here, we extend the concept of exact realizability to realizability of integer sequences as differences of the two fixed point counts sequences originating from a dynamical system and a topological factor. A criterion analogous to the one for exact realizability is given and the structure of the resulting set of integer sequences is outlined.
Classification : 37A45, 11A25
Keywords: dynamical systems, integer sequences, realizability
@article{JIS_2009__12_4_a3,
     author = {Neum\"arker, Natascha},
     title = {Realizability of integer sequences as differences of fixed point count sequences},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a3/}
}
TY  - JOUR
AU  - Neumärker, Natascha
TI  - Realizability of integer sequences as differences of fixed point count sequences
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a3/
LA  - en
ID  - JIS_2009__12_4_a3
ER  - 
%0 Journal Article
%A Neumärker, Natascha
%T Realizability of integer sequences as differences of fixed point count sequences
%J Journal of integer sequences
%D 2009
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a3/
%G en
%F JIS_2009__12_4_a3
Neumärker, Natascha. Realizability of integer sequences as differences of fixed point count sequences. Journal of integer sequences, Tome 12 (2009) no. 4. http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a3/