Some congruences for the partial Bell polynomials
Journal of integer sequences, Tome 12 (2009) no. 4.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $B_{n,k}$ and $A_{n}=\sum_{j=1}^{n}B_{n,j}$ with $A_0=1$ be, respectively, the $(n,k)^{\rm th}$ partial and the $n^{\rm th}$ complete Bell polynomials with indeterminate arguments $x_1,x_2,\ldots$. Congruences for $A_{n}$ and $B_{n,k}$ with respect to a prime number have been studied by several authors. In the present paper, we propose some results involving congruences for $B_{n,k}$ when the arguments are integers. We give a relation between Bell polynomials and we apply it to several congruences. The obtained congruences are connected to binomial coefficients.
Classification : 05A10, 11B73, 11B75, 11P83
Keywords: Bell polynomials, congruences, Stirling numbers, binomial coefficients
@article{JIS_2009__12_4_a0,
     author = {Mihoubi, Miloud},
     title = {Some congruences for the partial {Bell} polynomials},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a0/}
}
TY  - JOUR
AU  - Mihoubi, Miloud
TI  - Some congruences for the partial Bell polynomials
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a0/
LA  - en
ID  - JIS_2009__12_4_a0
ER  - 
%0 Journal Article
%A Mihoubi, Miloud
%T Some congruences for the partial Bell polynomials
%J Journal of integer sequences
%D 2009
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a0/
%G en
%F JIS_2009__12_4_a0
Mihoubi, Miloud. Some congruences for the partial Bell polynomials. Journal of integer sequences, Tome 12 (2009) no. 4. http://geodesic.mathdoc.fr/item/JIS_2009__12_4_a0/