Polynomials associated with reciprocation
Journal of integer sequences, Tome 12 (2009) no. 3.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Polynomials are defined recursively in various ways associated with reciprocation; e.g., $S_{n+1}(x)/T_{n+1}(x) = S_{n}(x)/T_{n}(x) \pm T_{n}(x)/S_{n}(x)$. Under certain conditions, the zeros of $S_{n}$ interlace those of $T_{n}$. Identities for $S_{n}, T_{n}$ and related polynomials are derived, as well as recurrence relations and infinite sums involving roots of polynomials.
Classification : 26C10, 26C15
Keywords: polynomial, interlacing zeros
@article{JIS_2009__12_3_a0,
     author = {Kimberling, Clark},
     title = {Polynomials associated with reciprocation},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_3_a0/}
}
TY  - JOUR
AU  - Kimberling, Clark
TI  - Polynomials associated with reciprocation
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_3_a0/
LA  - en
ID  - JIS_2009__12_3_a0
ER  - 
%0 Journal Article
%A Kimberling, Clark
%T Polynomials associated with reciprocation
%J Journal of integer sequences
%D 2009
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_3_a0/
%G en
%F JIS_2009__12_3_a0
Kimberling, Clark. Polynomials associated with reciprocation. Journal of integer sequences, Tome 12 (2009) no. 3. http://geodesic.mathdoc.fr/item/JIS_2009__12_3_a0/