On the subsequence of primes having prime subscripts
Journal of integer sequences, Tome 12 (2009) no. 2.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We explore the subsequence of primes with prime subscripts, $(q_{n})$, and derive its density and estimates for its counting function. We obtain bounds for the weighted gaps between elements of the subsequence and show that for every positive integer $m$ there is an integer arithmetic progression $(an+b : n \in \Bbb N)$ with at least $m$ of the $(q_{n})$ satisfying $q_{n} = an+b$.
Classification : 11A41, 11B05, 11B25, 11B83
Keywords: prime-prime, prime-prime number theorem, prime-prime gaps, prime-primes in progressions
@article{JIS_2009__12_2_a2,
     author = {Broughan, Kevin A. and Barnett, A.Ross},
     title = {On the subsequence of primes having prime subscripts},
     journal = {Journal of integer sequences},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a2/}
}
TY  - JOUR
AU  - Broughan, Kevin A.
AU  - Barnett, A.Ross
TI  - On the subsequence of primes having prime subscripts
JO  - Journal of integer sequences
PY  - 2009
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a2/
LA  - en
ID  - JIS_2009__12_2_a2
ER  - 
%0 Journal Article
%A Broughan, Kevin A.
%A Barnett, A.Ross
%T On the subsequence of primes having prime subscripts
%J Journal of integer sequences
%D 2009
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a2/
%G en
%F JIS_2009__12_2_a2
Broughan, Kevin A.; Barnett, A.Ross. On the subsequence of primes having prime subscripts. Journal of integer sequences, Tome 12 (2009) no. 2. http://geodesic.mathdoc.fr/item/JIS_2009__12_2_a2/